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Abstract. Point set registration is to determine correspondences be-
tween two different point sets, then recover the spatial transformation
between them. Many current methods, become extremely slow as the
cardinality of the point set increases; making them impractical for large
point sets. In this paper, we propose a bi-stage method called bi-GMM-
TPS, based on Gaussian Mixture Models and Thin-Plate Splines (GMM-
TPS). The first stage deals with global deformation. The two point sets
are grouped into clusters independently using K-means clustering. The
cluster centers of the two sets are then registered using a GMM based
method. The point sets are subsequently aligned based on the transfor-
mation obtained from cluster center registration. At the second stage,
the GMM based registration method is again applied, to fine tune the
alignment between the two clusters to address local deformation. Ex-
periments were conducted on eight publicly available datasets, includ-
ing large point clouds. Comparative experimental results demonstrate
that the proposed method, is much faster than state-of-the-art methods
GMM-TPS and QPCCP (Quadratic Programming based Cluster Cor-
respondence Projection); especially on large non-rigid point sets, such
as the swiss roll, bunny and USF face datasets, and challenging datasets
with topological ambiguity such as the banana dataset. Although the Co-
herent Point Drift (CPD) method has comparable computational speed,
it is less robust than bi-GMM-TPS. Especially for large point sets, un-
der conditions where the number of clusters is not extreme, a complexity
analysis shows that bi-GMM-TPS is more efficient than GMM-TPS.

1 Introduction

Point set registration has become an active research topic due to its wide ap-
plications in object tracking, motion recovery, 3D image reconstruction, stereo
matching, to name a few. Registration between two point sets is to find out
the meaningful correspondences between the points among the two sets and to
recover the underlying spatial transformation that warps one point set onto an-
other [14]. A point set is a collection of the spatial coordinates (locations), while
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other information such as mesh structure and texture information may not be
involved.

In recent years, several state-of-the-art algorithms have greatly influenced
the field, including robust point matching algorithm based on thin-plate splines
(RPM-TPS) [5], coherent point drift algorithm (CPD) [14] and Jian’s method
[9, 8], amongest others. For convenience, we call Jian’s method GMM-TPS in
this paper, which is an extension of a correlation-based point set registration
proposed by Tsin and Kanade [17]. Jian and Vemuri represented two point sets
as two separate Gaussian Mixture Models (GMMs), and formulated point sets
registration as aligning two distribution functions via minimizing their dissim-
ilarity. However, registration speed slows down dramatically as the number of
points increases, especially in the case of non-rigid point sets registration. An-
other problem with GMM-TPS is that it is not reliable when topological ambi-
guity is exhibited in the data (e.g., see the banana dataset plotted in Fig. 5(a)).

In this paper, we propose a bi-stage point set registration framework to
address the above problems. The first stage is a coarse alignment that deals
with global deformation. A clustering method is applied to divide the two point
sets into clusters separately. The two cluster centers are then registered using a
GMM-based method, the transformation of which is subsequently extended to
the entire point sets. At the fine registration stage, each pair of clusters between
the two point sets is registered also using a GMM-based method to accommo-
date any local deformation. The alignment problem is solved by minimizing the
dissimilarity of two GMMs with respect to thin-plate splines (TPS) transforma-
tion. As our proposed method applies GMM-TPS method at both stages in the
implementation, we conveniently name it as bi-GMM-TPS.

The proposed bi-GMM-TPS method can deal with point set registration in
following situations that are not well handled otherwise: (i) the deformation
appears uneven in different parts of the data, and (ii) the two data sets present
global misalignment caused by topological ambiguity. It is also worth noting
that the proposed method presents a concept of a general top-down hierarchical
framework for large point set registration, where the specific registration method
in each stage may be methods other than GMM-TPS.

The rest of this paper is organized as follows. An overview of point sets reg-
istration is presented in Section 3. A hierarchical bi-stage point sets registration
framework and implementation details are described in Section 4. In Section 5,
we evaluate the performances of the proposed algorithm. Section 6 concludes the
paper and recommends possible future works.

2 Related Works

Point sets registration involves three main topics: (i) the modelling of the point
set registration, (ii) the correspondences between the points among the two sets,
and (iii) the transformation that aligns one point set onto the other. As for
the modelling, Joshi and Lee [10], Luo and Hancock [13] and Myronenko and
Song [14, 15], formulated point set registration as a maximum likelihood (ML)
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estimation problem forcing the GMM centroids to approach the data points;
where one point set denotes the GMM centroids and the other represents the
data points in a Gaussian mixture. While Tsin and Kanade [17], Jian and Ve-
muri [9, 8] also considered registration as an alignment of two Gaussian mixtures,
they represent the two point sets as two separate GMMs centroids. By consider-
ing structure information of a point set as a weighted neighborhood graph, the
point matching problem can be formulated as a probabilistic graphical model
that can be solved by maximizing its associated probability [6, 3]. A Rieman-
nian framework of point cloud matching was first proposed by Deng et. al. [21].
They treated point clouds matching as a shape matching problem where the
point cloud is represented by a Schrödinger Distance Transform (SDT) shape
representation.

Chui [4] considered the latter two components of registration as two vari-
ables. All registration methods can be categorized into two types, according
to the methods handling these two variables. One type of registration method
attempts to determine the transformation without needing to establish the ex-
plicit point correspondences. This category includes density-based alignment ap-
proaches and TPS based registration algorithms [9, 8]. Under a similarity trans-
formation, instead of the complex non-rigid transformation in points matching,
when the transformation variables are eliminated, the least squares optimization
problem with respect to correspondences constraints decomposes into a concave
optimization with global optimality [23]. In [24], the concave optimization prob-
lem is further studied to reduce the complexity of computing the lower bound
by a k-cardinality linear assignment.

The other type of point set registration method attempts to solve correspon-
dences and transformation simultaneously via some alternative updating scheme
such as expectation maximization (EM) [1]. Examples include iterative closest
point (ICP) algorithm and its variations [7, 12], robust point matching algorithm
(RPM-TPS) [5], and coherent point drift algorithm (CPD) [14, 15].

Recently, clustering methods have also been incorporated in some approxi-
mation schemes to deal with large point sets registration problems. A quadratic
programming based cluster correspondence projection (QPCCP) algorithm was
proposed to pursue the approximate solution by relaxing the correspondences
to a continuous value [11]. A farthest-point clustering was used to group point
set X into N clusters and point set Y into M clusters [19]. Here, computational
complexity decreases by considering the relatively fewer cluster correspondences
instead of dense point correspondences. Subsequently, the recovery of point corre-
spondences from cluster correspondences is carried out by a simple substitution.

A further approximation of the point registration algorithm is based on clus-
ters and a generalized radial basis function [20]. This approach was a variant of
RPM-TPS where Gaussian kernel function replaces TPS to construct a non-rigid
mapping. Deterministic annealing was adopted to update the weight matrix and
the correspondence matrix. K-means clustering [1] was used to group one set
into a number of clusters, while the other set remains untouched. The number
of clusters is gradually increased leading to a coarse-to-fine matching. The pro-
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posed method is efficient and beneficial for large and unevenly distributed data.
However, it is sensitive to missing and rough correspondences.

Although the proposed method is also based on clustering, it is different from
the aforementioned approximation methods in that (i) the result from registering
the cluster centers is not the end but the input to a second fine alignment stage;
(ii) all points in both point sets are involved in the registration process, and (iii)
it is insensitive to missing or rough correspondences (inherited from GMM-TPS).

3 Gaussian Mixture Models-Thin Plate Splines
(GMM-TPS)

This section provides a summary of GMM-TPS [9]. TPS is an effective radial
basis function (RBF) for representing coordinate mappings Rd → Rd (d=2 or
3). Given a control point set Q = {q1, q2, . . . , qt}, The TPS mapping function is
defined as:

T (p) = pA1 + h+

t∑
i=1

wiU(‖p− qi‖) (1)

where A1 is a d × d rigid transformation parameter, p, qi ∈ Rd, and U(r) is
the radial basis function.

A homogeneous coordinates trick (a point denoting as [1, px, py]) is intro-
duced to lead to the following form of the TPS mapping function

T (p) = pA+ UW (2)

where A =

[
h
A1

]
is a (d + 1) × d global affine parameters, W is a t × d

local non-rigid warping parameters and U is a row vector describing structure
information between point p and control set Q.

Given two finite point sets M = {m1,m2, . . . ,ma}, and S = {s1, s2, . . . , sb},
where mi, sj ∈ Rd. Develop two Gaussian mixtures for M and S respectively:

f(x) =

a∑
i=1

αiφ(x;T (mi),Σ
2
i ) (3)

g(x) =

b∑
j=1

βjφ(x; sj ,Π
2
j ) (4)

where x is a spatial point (a vector); αi, βj are weights for Gaussian function
φ; Σ2

i , Π2
j are covariances, and T denotes the TPS transformation. The model

can be simplified by assuming equal weights and isotropic covariances in (3) and
(4).

Jian and Vemuri [9] have also pointed out that the final registration results
were similar for most reasonable selections of covariance in their experiments.
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The two point sets registration problem can be formulated as aligning two
Gaussian mixtures. If two point sets are aligned sufficiently accurately, the cor-
responding two mixtures would be expected to be highly similar. A cost function
for this is given by:

J =

∫
f2dx− 2

∫
fg dx+

λ

2
‖LT‖2 (5)

The first two terms measure the similarity between two Gaussian mixtures via a
L2 distance. The last term is a regularization term to control the smoothness of
TPS mapping function. Parameter λ balances the regularization strength. The
resulting bending energy is trace(WTKW ), where the kernel matrix K = Ki,j =
U(|qi−qj |), describes the internal structure information among the control point
set. An elegant closed-form solution is provided by a gradient-based numerical
optimization algorithm L-BFGS-B in [18].

4 Bi-Stage Point Sets Registration Framework

4.1 The bi-stage registration framework

K-means clustering is a popular unsupervised learning algorithm. It groups sim-
ilar spatial points to form a cluster, thus its center represents the spatial struc-
ture of the cluster to a certain degree. Motivated by it, the first stage align-
ment is designed to obtain a global and coarse TPS transformation on cluster
centers. X = {x1, x2, . . . , xm} is clustered into k clusters denoting as Xi =
{xi1, xi2, . . . , xini

}, i = 1, 2, . . . , k, and the centers set is C = {c1, c2, . . . , ck}. Sim-

ilarly, Y = {y1, y2, . . . , yn} is clustered into k clusters as Yj = {yj1, y
j
2, . . . , y

j
nj
},

j = 1, 2, . . . , k, and centers set is S = {s1, s2, . . . , sk}. For registration, there is
no specific requirement on the number of clusters. Without loss of generality, we
therefore set the number of clusters in both point sets to be the same.

Two Gaussian mixtures are generated for C and S respectively. A TPS map-
ping function u(A(1),W (1)) is computed by minimizing the divergence of two
Gaussian mixtures using gradient-based optimization L-BFGS-B. We update
set X and its clusters X1, X2, . . . , Xk and denote them as X̃ and X̃1, X̃2, . . . , X̃k

respectively. The resultant alignment is capable of effectively removing the in-
fluence of global misalignment.

In addition, this coarse alignment provides a finer initialization for further
local registration, as the resultant TPS function u(A(1),W (1)) can be extended
to the whole set X, by replacing U with a m× t matrix describing the structure
information of set X and control point set Q. The correspondences between the
cluster centers are recovered through a bijection function from center set C to
S using a nearest neighbour scheme.

At the fine registration stage, dense point registration is conducted on each

cluster pair (X̃i, Yj). The resulting TPS function u(A
(2)
i ,W

(2)
i ) is used to warp

cluster X̃i onto Yj . According to GMM-TPS implemented in the proposed frame-
work, it is obvious that the registration result is influenced only by the points



6 Chen J., Zaman M., Liao I.Y. and Belaton B.

within a cluster, its corresponding cluster, and the control points. The method
of aligning two distribution functions based on TPS reduces any possible inter-
ference between two clusters Xi and Xj , i 6= j. This inherent attribute greatly
benefits the division-based alignment for large point sets. A larger number of
control points yield a more flexible deformation, however, this will increase com-
putation time. In this paper, less control points obtained from a sparse spacing
are used at the coarse alignment stage, with more control points from a dense
spacing introduced at the fine registration stage.

Our bi-stage point sets registration algorithm (bi-GMM-TPS) is summarized
as follows:

Algorithm 1 Bi-Stage Point Set Registration with K-means Clustering

1: procedure Bi-GMM-TPS
2: X← moving model point set X
3: Y← fixed scene point set Y
4: Q← control point set Q
5: k ← no. of clusters
6: Clustering :
7: (C1, µ1)← (indices, locations) of cluster centres X
8: (C2, µ2)← (indices, locations) of cluster centres Y
9: Global Alignment :

10: A(1),W (1) ← align µ1 onto µ2 using GMM-TPS
11: X̃ ← update X with TPS parameters A(1),W (1) using TPS warping
12: f← bijection: assign each element of µ1 to its nearest neighbour in µ2
13: Local Fine Registration:
14: for i=1 to k do
15: x← X̃i

16: y← Ỹf(i)

17: A
(2)
i ,W

(2)
i ← align x onto y using GMM-TPS

4.2 Computational Complexity Analysis

GMM-TPS In GMM-TPS, the computational cost is:

1. Computing two integral values
∫
f2dx and

∫
fgdx: O(m2) +O(mn) ; and

2. Computing kernel matrices U and K: O(mt) +O(t2).

Thus, the total computational cost for GMM-TPS is

d1 = O(m2) +O(mn) +O(mt) +O(t2). (6)

BI-GMM-TPS Assume the number of control points in our bi-GMM-TPS be
t (the same as in GMM-TPS). The number of clusters is k. The computing cost
is:
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1. K-means clustering on point sets X and Y : O(km) +O(kn);

2. Initial matching process: O(k2) +O(k2) +O(kt) +O(t2);

3. Building bijection function from µ1 to µ2: O(k2), and

4. Local fine registration: O
(

m2

k

)
+O

(
mn
k

)
+O(mt) +O(kt2).

The total cost for bi-GMM-TPS is therefore

(7)
d2 = O(km) +O(kn) +O(k2) +O(kt) +O(t2)

+O
(
m2

k

)
+O

(mn
k

)
+O(mt) +O(kt2).

Without loss of generality, let m = min(m,n), d1 = (m2 + mn + mt + t2),

d2 = (km + kn + k2 + kt + t2 + m2

k + mn
k + mt + kt2). When k = 1 or k = m,

we can obtain d2 > d1. That is to say, two extreme situations lead to a higher
computational cost for bi-GMM-TPS.

Comparison between GMM-TPS and bi-GMM-TPS When the computa-
tion time of the initial matching process is negligible, and the number of clusters

k, satisfies m−
√
m2−4m
2 < k < m+

√
m2−4m
2 (m > 4); d2 < d1 holds.

Furthermore, we consider the general case. With increasing value of k, d2
decreases initially and then increases. Suppose, when k = k0, the minimum of
d2 is reached, denoted as d̃2. We can see from (7), as t increases d̃2 increases,
leading to d2 > d1. In practice, the control points will not be too great, otherwise
this will increase the computational complexity and the risk of over-fitting. Thus
the decision to disregard the computational time for the initial alignment stage
can be justified.

5 Experimental Results and Discussion

In this section, extensive experiments are carried out to investigate the perfor-
mance of the proposed method (bi-GMM-TPS) on various data sets. Quantita-
tive and qualitative comparisons with state-of-the-art registration methods are
also presented. All experiments were performed on Matlab, on a PC with 4GB
of RAM and a 2.8 GHz Intel Xeon W3530 CPU running Windows 7 (64-bit).

5.1 Data Analysis

There are eight public data sets being used in the experiments. Four of them are
obtained from cited literature in computer vision [14, 9]. Three are challenging
data sets used in machine learning such as banana, Gaussian and swiss roll data.
The last one is obtained from the USF 3D face database representing a very large
point set [25]. The descriptions of the datasets are in Table 1.
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Table 1. The eight datasets used in our experiments:

Dataset Name Size Description
(points x dimension)

Dolphin 91× 2 2D shape edge
Fish 98× 2 2D shape edge
Synthetic face 392× 3 3D surface
Gaussian 1800× 2 2D points cloud
Banana 8000× 2 2D shape edge points cloud
Swiss roll 8000× 3 3D points cloud
Bunny 8171× 3 3D laser range scan
USF face 75972× 3 3D laser range scan

To quantitatively evaluate the performance of the registration methods, three
metrics are defined in this paper. First, registration error is defined as a mean
L2 distance between the transformed point set and the scene point set

registration error =
1

mn

m∑
i=1

n∑
j=1

‖xi − yj‖L2 (8)

Another measurement is the number of correspondences. If the distance be-
tween a point in one set and its nearest neighbour in another set is less than
a predefined threshold, it is considered that this point has found its correspon-
dence. This metric is defined as:

number of correspondences = |CX | (9)

where |·| is the cardinality of a finite point set; and the correspondences set
CX is generated by

CX = {yk, i = 1, 2, . . . ,m| d(xi, yk) < τ ; where d(xi, yk) = minjd(xi, yj)} (10)

The third metric is recall, that was first used in [16] and adopted in [9]. Recall
is defined as the proportion of the number of the true-positive correspondences
to the total number of ground truth correspondences. Under a reasonable as-
sumption that one-to-one correspondence happens in two clean point sets with
the same cardinality. The number of ground truth correspondences is equivalent
to the cardinality of the point set. Thus, recall is computed as

recall =
The number of true-positive correspondences

Total number of ground truth correspondences
. (11)

5.2 Performance Evaluation of Bi-GMM-TPS

Experiments on choice of clustering methods. Two clustering methods,
K-means and K-medoids, are used in the experiments to compare the perfor-
mance of bi-GMM-TPS on different choices of clustering methods. The results
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are shown in Table 2. One can choose other clustering methods according to the
actual problem one is dealing with.

Table 2. Comparison of registration performance based on K-means and K-medoids.

Dataset Registration Number of Recall Time(s)
Error Correspondences

k-means k-medoids k-means k-medoids k-means k-medoids k-means k-medoids

Dolphin 0.0342 0.1588 79 39 0.7143 0.1538 0.2148 0.3291
Fish 0.0212 0.0731 93 71 0.4794 0.1327 0.3910 0.2612
Synthetic face 0.0926 0.3077 336 275 0.4388 0.0638 1.20 1.9939
Gaussian 1.0651 1.2007 1771 1780 0.0139 0.0100 1.7197 2.6628

Due to out of memory problem when computing the k-medoids, we do not
have results for swiss roll, banana, bunny and USF 3D face data.

We can see from Table 2 that for bi-GMM-TPS method:

1. K-means can provide lower registration errors than K-medoids on the given
data;

2. The recalls based on K-means are higher than those based on K-medoids.
3. For the given distance threshold, K-means found more correspondences on

the first three data sets. However, K-medoids obtained higher number of
correspondences on Gaussian points cloud;

4. K-means based algorithm runs faster than K-medoids based algorithm on
dolphin and Gaussian data, while it is slightly slower on the synthetic face
data.

The recall for points cloud data (i.e. Gaussian data) is lower than the re-
calls for shapes and surface data (i.e., dolphin, fish, and synthetic face data),
although the number of correspondences of the former is higher. Furthermore,
note that K-medoids finds cluster centers in O(N2) time while K-means takes
O(N) time. Based on the above, we find that bi-GMM-TPS using K-means
is better than using K-medoids, and therefore K-means is used in all of the
following experiments.

Experiments on number of clusters, number of control points. Without
loss of generality, face data and Gaussian data are chosen for the two groups
experiments that are carried out here. The registration results with varying the
number of clusters and the number of control points are shown in Fig. 1. The
size of the control points is computed by t = (interval)

d× d, d = 2 or d = 3. The
higher the interval value, the larger the number of control points.

Fig. 1(a) shows the registration errors (i.e. mean L2 distance) of bi-GMM-
TPS on synthetic face data. Fig. 1(b) displays the registration errors on Gaussian
data. The x-axis is the number of clusters (k) varying from 2 to 15 for (a) and
from 2 to 10 for (b) respectively. For each k value, we have conducted 10 runs
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Interval = 5 Interval = 7 Interval = 9

(a) Synthetic face dataset

(b) Gaussian dataset

Fig. 1. Registration error of bi-GMM-TPS with respect to k and control points. The
horizontal line represents the registration error of GMM-TPS, while the scatter plot
represents the registration error of bi-GMM-TPS.

due to the random initialization for K-means, and the optimal results are shown
here. The reason is that our main objective is to evaluate the bi-stage registration
framework with a valid clustering result. There may be other clustering methods
that can produce more stable cluster centres than K-means, however, it is out
of the scope of this paper and can be addressed in our future work.

As for synthetic face data (see Fig. 1(a)), registration errors for all interval
values and all k values in this experiment are less or no greater than the reg-
istration errors of the original GMM-TPS. The average registration error with
interval value 5 is the smallest. There is no apparent trend between the regis-
tration error and the k values. However, as for Gaussian data (see Fig. (1(b)),
it is observed that the registration error has an approximately increasing trend
when k is larger than 4, especially when interval is 9. Furthermore, when k is
4, the optimal alignment is arrived at for all three intervals. This is due to the
fact that Gaussian data has four peaks. When the k value is larger than 4, it
is more likely to result in larger registration errors than the GMM-TPS method
as evident in k=7 with interval=5; and k=7, 9, 10 with interval=9. It is easy
to understand as Gaussian data has a clear clustered pattern and any incorrect
clustering result would result in larger registration errors. In comparison with
Gaussian data, one may see that for synthetic face center of the clusters, greater
stability is shown to be concurrent with structure in the data. It is also evident
that the computation complexity of our method rises sharply with an increase
in the intervals (shown in Fig. 2).
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Fig. 2. Computing time on synthetic face
data.

Fig. 3. Comparison of computing times on
seven datasets.

Fluctuation of the registration errors is due to the randomness of the initial-
ization of K-means, that may lead to different center locations each time the
bi-GMM-TPS algorithm runs. Deeper studies on this shall be carried out in the
future.

Experiments on choice of initial alignments Bi-GMM-TPS is a general
hierarchical framework for large point set registration, the registration methods
in each stage may be other choices than GMM-TPS. ICP-GMM-TPS algorithm
refers to the alignment method being iterative closest point (ICP) at the first
stage on two clustered centers sets. ICP-GMM-TPS method is tested on syn-
thetic face and banana dataset without any preference and the only intention is
to validate the registration performances.

(a) (b) (c)

Fig. 4. Point sets registration on synthetic face data. (a) The synthetic face dataset
(input data); (b) ICP-GMM-TPS registration; (c) Bi-GMM-TPS registration.

For synthetic face dataset, comparison results between bi-GMM-TPS and
ICP-GMM-TPS are shown in Fig. 4 and Table 3. For banana dataset, we have
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Table 3. Comparison of registration performance on synthetic face data.

Algorithm Registration error Time (s)

Bi-GMM-TPS 0.0933 8.24
ICP-GMM-TPS 0.1229 9.02

compared ICP and GMM-TPS by registering two clustered center sets. The
registration error of GMM-TPS is 8.1924 and the registration error of ICP is
8.8993. More importantly, GMM-TPS remedies the topological ambiguity of ba-
nana data, while ICP failed to do so.

Both quantitative performance and visualization of bi-GMM-TPS outper-
form those of ICP-GMM-TPS. The comparisons on these two datasets demon-
strate that bi-GMM-TPS is more reliable and flexible than ICP-GMM-TPS when
dealing with non-rigid registration.

5.3 Comparisons with GMM-TPS, CPD and QPCCP

The above three comparators are chosen for comparing with the proposed bi-
GMM-TPS since

1. GMM-TPS is the basis of the specific implementation in the framework, and
2. CPD is an alternative comparable non-rigid registration method especially

for large point sets, and
3. QPCCP has used a clustering method for approximate registration, and is

therefore a suitable comparator.

Comparison results between bi-GMM-TPS and GMM-TPS are shown in
Figs. 1 and 3. The computational time of two algorithms on seven data sets
are plotted in Fig. 3. When the size of the input point set is small, bi-GMM-
TPS is slower than GMM-TPS. However, bi-GMM-TPS outperforms GMM-TPS
on large data sets such as the Gaussian, banana and bunny data. A comparison
of registration errors is carried out on face and Gaussian data in Fig. 1. The
horizontal lines are the registration errors of GMM-TPS. All registration errors
of bi-GMM-TPS are less than those of GMM-TPS on face data, and most of the
registration errors of bi-GMM-TPS are smaller on Gaussian data.

Registration results on banana data shown in Fig. 5, where we set k = 12
and interval as 5, clearly demonstrate that bi-GMM-TPS is able to rectify any
global misalignment caused by topological ambiguity in the data (Fig. 5(d)),
when GMM-TPS failed to do so (Fig. 5(b)). Although we notice that CPD
can also remedy topological ambiguity in the data, the transformed point set
has been unevenly warped (Fig. 5(c)). Quantitative comparison is shown in Ta-
ble 4. Although the difference in the registration error between bi-GMM-TPS
and GMM-TPS is negligible, the alignment by GMM-TPS is clearly wrong. Fur-
thermore, the bi-GMM-TPS is much faster than GMM-TPS on registering the
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(a) (b)

(c) (d)

Fig. 5. Point sets registration on banana data. (a) The banana dataset (input data);
(b) GMM-TPS registration; (c) CPD registration; (d) bi-GMM-TPS registration

banana data, while CPD provides the worst registration error and longest com-
puting time among these three methods.

Two 3D face scans chosen at random from the USF 3D face database [25]
are used to evaluate the efficiency of bi-GMM-TPS algorithm on large point sets
registration. An interval value 5 is used to set the size of the control points.
The registration error is 6.3569 and 4.5885 for bi-GMM-TPS and GMM-TPS
respectively. There is not much visual difference in terms of registration accuracy.
However, the computational time for bi-GMM-TPS is 4.55×103 seconds (∼1.26
hours), which is much shorter than that of GMM-TPS 67.11 × 103 (∼18.64
hours). GMM-TPS becomes impractical in dealing very large point sets. CPD
method is also carried out on this large dataset and the registration error is
7.7654 with a computational time of 4.42 × 103 seconds(∼1.22 hours). CPD is
marginally quicker but has the lowest registration accuracy.

QPCCP is compared with the proposed bi-GMM-TPS, for QPCCP has also
used clustering methods for approximate registration. As it has been reported
that QPCCP demonstrates less registration accuracy in terms of distance-based
metrics as compared to GMM-TPS [20], we compared our method with QPCCP
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Table 4. Comparison of registration performance on banana data.

Algorithm Registration error Time (s)

Bi-GMM-TPS 5.8493 17.4
GMM-TPS 5.8450 84.4
CPD 7.8130 97.3

using not only the mean L2 distance but also the number of correspondences
(refer to section 5.1) on fish data. From Table 5, we can see that bi-GMM-TPS
can provide a lower registration error and more correspondences than QPCCP.

Table 5. Comparison of registration performance on fish data.

Algorithm Registration error No. of Correspondences

Bi-GMM-TPS 0.0212 93
QPCCP 0.0457 81

6 Conclusion

In this paper, a hierarchical bi-stage registration framework bi-GMM-TPS for
large point sets has been proposed. K-means clustering is employed to group
large point sets into the same number of clusters respectively. First stage align-
ment was done on two cluster center sets, where the resultant thin-plate splines
(TPS) transformation is applied to the entire point set. Before further registra-
tion is conducted on the cluster pairs, the points of one center set find their
nearest neighbors in the other center set. Thus, fine registration is performed
within the clusters and their corresponding clusters. Extensive experimental re-
sults have demonstrated the computational efficiency and robustness of our pro-
posed method. Results have shown that our bi-GMM-TPS method outperforms
some of the state-of-the-art point set registration methods GMM-TPS and CPD
and QPCCP.

However, registration accuracy of the proposed method depends on the ac-
curacy and reliability of clustering. A clustering method that is robust to point
set deformation, and more stable to random initialization will be studied in the
future.
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